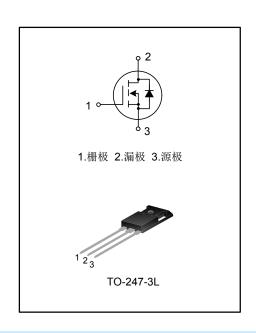



# 47A, 600V DP MOS功率管


#### 描述

SVS47N60P7 N 沟道增强型高压功率 MOSFET 采用士兰微电子 DP MOS 技术新平台制造,具有很低的传导损耗和开关损耗。使得功率转换器具有高效,高功率密度,提高热行为。

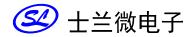
此外, SVS47N60P7应用广泛。如,适用于硬/软开关拓扑。

#### 特点

- 47A, 600V,  $R_{DS(on)(\text{APM})}=55m\Omega @V_{GS}=10V$
- ◆ 创新高压技术
- ◆ 低栅极电荷
- ◆ 定期额定雪崩
- ◆ 较强 dv/dt 能力
- ◆ 高电流峰值



#### 产品规格分类


| 产品名称       | 封装形式      | 打印名称       | 环保等级 | 包装形式 |
|------------|-----------|------------|------|------|
| SVS47N60P7 | TO-247-3L | SVS47N60P7 | 无铅   | 料管   |

### 极限参数(除非特殊说明, T<sub>c</sub>=25°C)

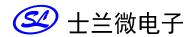
| 参 数 名 和                         |                       | 符号               | 参 数 范 围  | 单 位  |  |
|---------------------------------|-----------------------|------------------|----------|------|--|
| 漏源电压                            |                       | $V_{DS}$         | 600      | V    |  |
| 栅源电压                            |                       | $V_{GS}$         | ±30      | V    |  |
|                                 | T <sub>C</sub> =25°C  | I <sub>D</sub>   | 47       |      |  |
| 漏极电流                            | T <sub>C</sub> =100°C |                  | 30       | Α    |  |
| 漏极脉冲电流                          |                       | $I_{DM}$         | 140      | Α    |  |
| 耗散功率(Tc=25°C)<br>- 大于25°C每摄氏度减少 |                       | 415              |          | W    |  |
|                                 |                       | $P_D$            | 3.32     | W/°C |  |
| 单脉冲雪崩能量 (注 1)                   |                       | E <sub>AS</sub>  | 2103     | mJ   |  |
| 工作结温范围                          |                       | $T_J$            | -55~+150 | °C   |  |
| 贮存温度范围                          |                       | T <sub>stg</sub> | -55~+150 | °C   |  |

#### 热阻特性

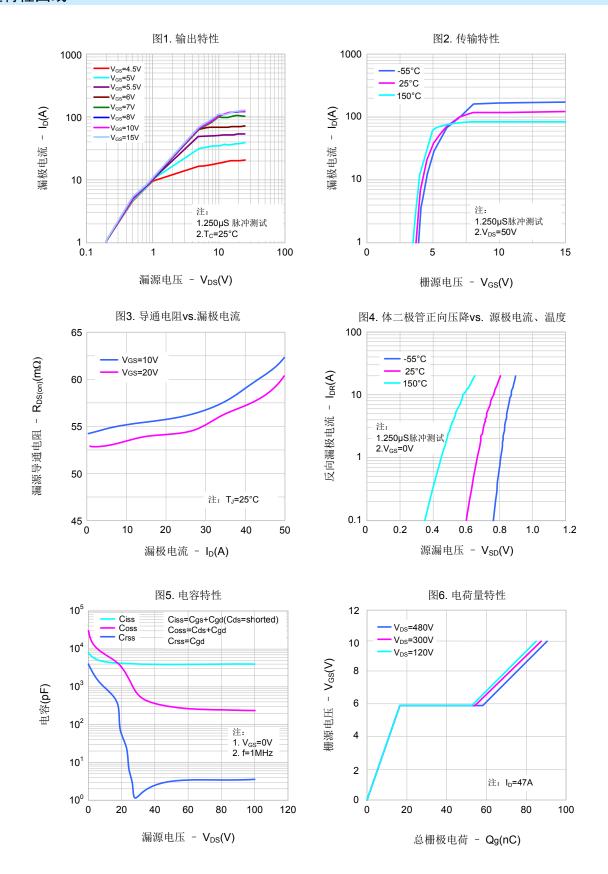
| 参 数 名 称  | 符号              | 参 数 范 围 | 单位   |
|----------|-----------------|---------|------|
| 芯片对管壳热阻  | $R_{	heta JC}$  | 0.3     | °C/W |
| 芯片对环境的热阻 | $R_{\theta JA}$ | 50      | °C/W |

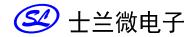


# 电气参数(除非特殊说明, T<sub>c</sub>=25°C)

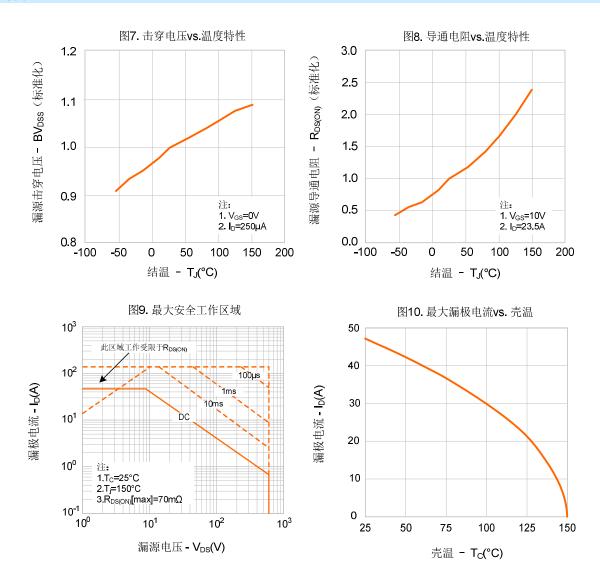

| 参 数      | 符 号                 | 测试条件                                                                | 最小值 | 典型值  | 最大值  | 单位 |
|----------|---------------------|---------------------------------------------------------------------|-----|------|------|----|
| 漏源击穿电压   | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V, I <sub>D</sub> =250μA                          | 600 |      |      | V  |
| 漏源漏电流    | I <sub>DSS</sub>    | V <sub>DS</sub> =600V, V <sub>GS</sub> =0V                          |     |      | 1.0  | μA |
| 栅源漏电流    | I <sub>GSS</sub>    | $V_{GS}$ =±30V, $V_{DS}$ =0V                                        |     |      | ±100 | nA |
| 栅极开启电压   | $V_{GS(th)}$        | $V_{GS}=V_{DS}$ , $I_D=250\mu A$                                    | 2.0 |      | 4.0  | V  |
| 静态漏源导通电阻 | R <sub>DS(on)</sub> | V <sub>GS</sub> =10V, I <sub>D</sub> =30A                           |     | 55   | 70   | mΩ |
| 输入电容     | C <sub>iss</sub>    |                                                                     |     | 3902 |      |    |
| 输出电容     | C <sub>oss</sub>    | V <sub>DS</sub> =25V, V <sub>GS</sub> =0V,<br>f=1.0MHz              |     | 237  |      | pF |
| 反向传输电容   | C <sub>rss</sub>    |                                                                     |     | 3.5  |      |    |
| 开启延迟时间   | $t_{d(on)}$         |                                                                     |     | 19   |      |    |
| 开启上升时间   | t <sub>r</sub>      | $V_{DD}$ =380V, $V_{GS}$ =13V, $R_{G}$ =1.8 $\Omega$ , $I_{D}$ =47A | 1   | 39   |      |    |
| 关断延迟时间   | $t_{d(off)}$        |                                                                     | 1   | 87   |      | ns |
| 关断下降时间   | t <sub>f</sub>      | (注 2,3)                                                             | 1   | 47   |      |    |
| 栅极电荷量    | $Q_{g}$             | V <sub>DD</sub> =380V, V <sub>GS</sub> =10V,                        | -1  | 87   |      |    |
| 栅极-源极电荷量 | $Q_gs$              | I <sub>D</sub> =47A                                                 | -1  | 15   |      | nC |
| 栅极-漏极电荷量 | $Q_gd$              | (注 2,3)                                                             | -1  | 40   |      |    |

# 源-漏二极管特性参数


| 参数     | 符号              | 测试条件                                     | 最小值 | 典型值 | 最大值 | 单位 |
|--------|-----------------|------------------------------------------|-----|-----|-----|----|
| 连续源极电流 | Is              | MOS 管中源极、漏极构成的                           |     | -   | 47  |    |
| 源极脉冲电流 | I <sub>SM</sub> | 反偏 P-N 结                                 |     |     | 140 | Α  |
| 二极管压降  | $V_{SD}$        | I <sub>S</sub> =47A,V <sub>GS</sub> =0V  |     |     | 1.4 | ٧  |
| 反向恢复时间 | Trr             | I <sub>S</sub> =47A,V <sub>GS</sub> =0V, |     | 640 |     | ns |
| 反向恢复电荷 | Q <sub>rr</sub> | dI <sub>F</sub> /dt=100A/µs (注 2)        |     | 15  |     | μC |

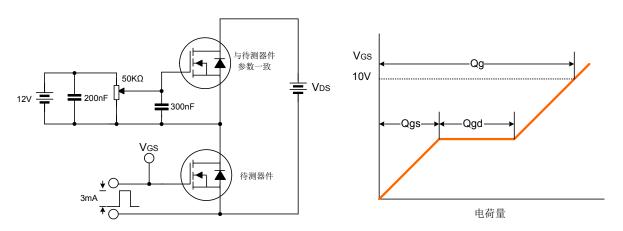

#### 注:

- 1. L=30mH, $I_{AS}$ =11A, $V_{DD}$ =100V,  $R_{G}$ =25 $\Omega$ , 开始温度 $T_{J}$ =25 $^{\circ}$ C;
- 2. 脉冲测试: 脉冲宽度≤300μs,占空比≤2%;
- 3. 基本上不受工作温度的影响。

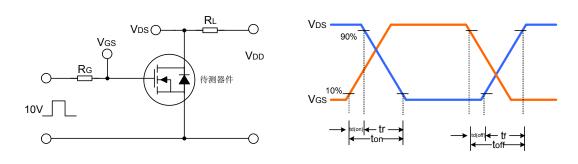



#### 典型特性曲线

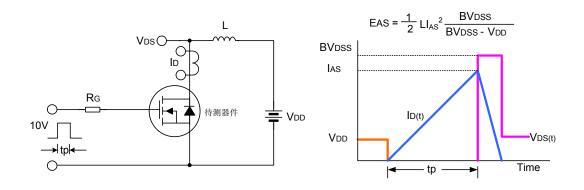


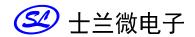



# 典型特性曲线 (续)

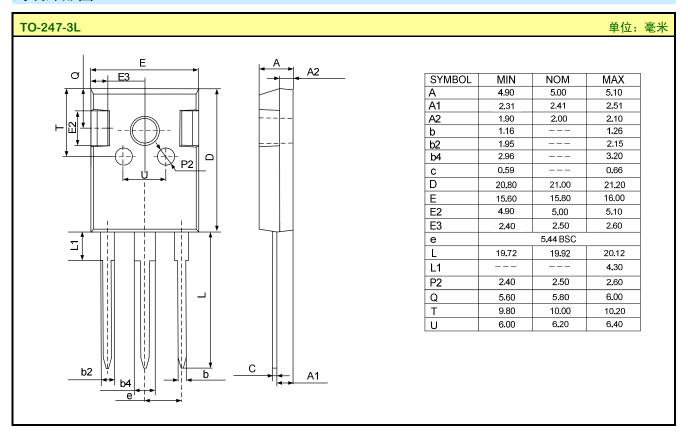



#### 典型测试电路


#### 栅极电荷量测试电路及波形图



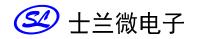

#### 开关时间测试电路及波形图




## EAS测试电路及波形图






#### 封装外形图



#### 声明:

- ◆ 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

版本号: 1.1



# SVS47N60P7 说明书

产品名称: SVS47N60P7 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.1

修改记录:

1. 修改图 5 和封装外形图

版 本: 1.0

修改记录:

1. 正式版本发布

版本号: 1.1 共7页 第7页